3.2.58 \(\int \frac {(a+b \tanh ^{-1}(c x))^2}{x^2 (d+e x)} \, dx\) [158]

Optimal. Leaf size=412 \[ \frac {c \left (a+b \tanh ^{-1}(c x)\right )^2}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {2 e \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {2 b c \left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+c x}\right )}{d}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-1+\frac {2}{1-c x}\right )}{d^2}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2}{1+c x}\right )}{d^2}-\frac {b^2 c \text {PolyLog}\left (2,-1+\frac {2}{1+c x}\right )}{d}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}-\frac {b^2 e \text {PolyLog}\left (3,1-\frac {2}{1-c x}\right )}{2 d^2}+\frac {b^2 e \text {PolyLog}\left (3,-1+\frac {2}{1-c x}\right )}{2 d^2}+\frac {b^2 e \text {PolyLog}\left (3,1-\frac {2}{1+c x}\right )}{2 d^2}-\frac {b^2 e \text {PolyLog}\left (3,1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d^2} \]

[Out]

c*(a+b*arctanh(c*x))^2/d-(a+b*arctanh(c*x))^2/d/x+2*e*(a+b*arctanh(c*x))^2*arctanh(-1+2/(-c*x+1))/d^2-e*(a+b*a
rctanh(c*x))^2*ln(2/(c*x+1))/d^2+e*(a+b*arctanh(c*x))^2*ln(2*c*(e*x+d)/(c*d+e)/(c*x+1))/d^2+2*b*c*(a+b*arctanh
(c*x))*ln(2-2/(c*x+1))/d+b*e*(a+b*arctanh(c*x))*polylog(2,1-2/(-c*x+1))/d^2-b*e*(a+b*arctanh(c*x))*polylog(2,-
1+2/(-c*x+1))/d^2+b*e*(a+b*arctanh(c*x))*polylog(2,1-2/(c*x+1))/d^2-b^2*c*polylog(2,-1+2/(c*x+1))/d-b*e*(a+b*a
rctanh(c*x))*polylog(2,1-2*c*(e*x+d)/(c*d+e)/(c*x+1))/d^2-1/2*b^2*e*polylog(3,1-2/(-c*x+1))/d^2+1/2*b^2*e*poly
log(3,-1+2/(-c*x+1))/d^2+1/2*b^2*e*polylog(3,1-2/(c*x+1))/d^2-1/2*b^2*e*polylog(3,1-2*c*(e*x+d)/(c*d+e)/(c*x+1
))/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 412, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {6087, 6037, 6135, 6079, 2497, 6033, 6199, 6095, 6205, 6745, 6059} \begin {gather*} \frac {b e \text {Li}_2\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d^2}-\frac {b e \text {Li}_2\left (\frac {2}{1-c x}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d^2}+\frac {b e \text {Li}_2\left (1-\frac {2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (c x+1)}\right )}{d^2}-\frac {2 e \tanh ^{-1}\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d^2}-\frac {e \log \left (\frac {2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c x+1) (c d+e)}\right )}{d^2}+\frac {c \left (a+b \tanh ^{-1}(c x)\right )^2}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}+\frac {2 b c \log \left (2-\frac {2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}-\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1-c x}\right )}{2 d^2}+\frac {b^2 e \text {Li}_3\left (\frac {2}{1-c x}-1\right )}{2 d^2}+\frac {b^2 e \text {Li}_3\left (1-\frac {2}{c x+1}\right )}{2 d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (c x+1)}\right )}{2 d^2}-\frac {b^2 c \text {Li}_2\left (\frac {2}{c x+1}-1\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])^2/(x^2*(d + e*x)),x]

[Out]

(c*(a + b*ArcTanh[c*x])^2)/d - (a + b*ArcTanh[c*x])^2/(d*x) - (2*e*(a + b*ArcTanh[c*x])^2*ArcTanh[1 - 2/(1 - c
*x)])/d^2 - (e*(a + b*ArcTanh[c*x])^2*Log[2/(1 + c*x)])/d^2 + (e*(a + b*ArcTanh[c*x])^2*Log[(2*c*(d + e*x))/((
c*d + e)*(1 + c*x))])/d^2 + (2*b*c*(a + b*ArcTanh[c*x])*Log[2 - 2/(1 + c*x)])/d + (b*e*(a + b*ArcTanh[c*x])*Po
lyLog[2, 1 - 2/(1 - c*x)])/d^2 - (b*e*(a + b*ArcTanh[c*x])*PolyLog[2, -1 + 2/(1 - c*x)])/d^2 + (b*e*(a + b*Arc
Tanh[c*x])*PolyLog[2, 1 - 2/(1 + c*x)])/d^2 - (b^2*c*PolyLog[2, -1 + 2/(1 + c*x)])/d - (b*e*(a + b*ArcTanh[c*x
])*PolyLog[2, 1 - (2*c*(d + e*x))/((c*d + e)*(1 + c*x))])/d^2 - (b^2*e*PolyLog[3, 1 - 2/(1 - c*x)])/(2*d^2) +
(b^2*e*PolyLog[3, -1 + 2/(1 - c*x)])/(2*d^2) + (b^2*e*PolyLog[3, 1 - 2/(1 + c*x)])/(2*d^2) - (b^2*e*PolyLog[3,
 1 - (2*c*(d + e*x))/((c*d + e)*(1 + c*x))])/(2*d^2)

Rule 2497

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/D[u, x])]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 6033

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6059

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^2)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh[c*x])^2*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2/(1 + c*x)]/e), x] - Simp[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2*c*
((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b^2*(PolyLog[3, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[b^2*(PolyL
og[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2
, 0]

Rule 6079

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTanh[c*x
])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Dist[b*c*(p/d), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/
d))]/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6087

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6135

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Dist[1/d, Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]

Rule 6199

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Dist[1/2, Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6205

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x^2 (d+e x)} \, dx &=\int \left (\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2}{d^2 x}+\frac {e^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{d^2 (d+e x)}\right ) \, dx\\ &=\frac {\int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x^2} \, dx}{d}-\frac {e \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x} \, dx}{d^2}+\frac {e^2 \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d+e x} \, dx}{d^2}\\ &=-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {2 e \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d^2}+\frac {(2 b c) \int \frac {a+b \tanh ^{-1}(c x)}{x \left (1-c^2 x^2\right )} \, dx}{d}+\frac {(4 b c e) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d^2}\\ &=\frac {c \left (a+b \tanh ^{-1}(c x)\right )^2}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {2 e \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d^2}+\frac {(2 b c) \int \frac {a+b \tanh ^{-1}(c x)}{x (1+c x)} \, dx}{d}-\frac {(2 b c e) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d^2}+\frac {(2 b c e) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d^2}\\ &=\frac {c \left (a+b \tanh ^{-1}(c x)\right )^2}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {2 e \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {2 b c \left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+c x}\right )}{d}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{d^2}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d^2}-\frac {\left (2 b^2 c^2\right ) \int \frac {\log \left (2-\frac {2}{1+c x}\right )}{1-c^2 x^2} \, dx}{d}-\frac {\left (b^2 c e\right ) \int \frac {\text {Li}_2\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d^2}+\frac {\left (b^2 c e\right ) \int \frac {\text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d^2}\\ &=\frac {c \left (a+b \tanh ^{-1}(c x)\right )^2}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {2 e \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d^2}+\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}+\frac {2 b c \left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+c x}\right )}{d}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{d^2}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{d^2}+\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d^2}-\frac {b^2 c \text {Li}_2\left (-1+\frac {2}{1+c x}\right )}{d}-\frac {b e \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1-c x}\right )}{2 d^2}+\frac {b^2 e \text {Li}_3\left (-1+\frac {2}{1-c x}\right )}{2 d^2}+\frac {b^2 e \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d^2}-\frac {b^2 e \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 9.76, size = 1188, normalized size = 2.88 \begin {gather*} -\frac {a^2}{d x}-\frac {a^2 e \log (x)}{d^2}+\frac {a^2 e \log (d+e x)}{d^2}+\frac {a b \left (i c d e \pi \tanh ^{-1}(c x)-\frac {2 c d^2 \tanh ^{-1}(c x)}{x}+2 c d e \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x)-c d e \tanh ^{-1}(c x)^2+e^2 \tanh ^{-1}(c x)^2-\sqrt {1-\frac {c^2 d^2}{e^2}} e^2 e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )} \tanh ^{-1}(c x)^2-2 c d e \tanh ^{-1}(c x) \log \left (1-e^{-2 \tanh ^{-1}(c x)}\right )-i c d e \pi \log \left (1+e^{2 \tanh ^{-1}(c x)}\right )+2 c d e \tanh ^{-1}\left (\frac {c d}{e}\right ) \log \left (1-e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+2 c d e \tanh ^{-1}(c x) \log \left (1-e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+2 c^2 d^2 \log \left (\frac {c x}{\sqrt {1-c^2 x^2}}\right )-\frac {1}{2} i c d e \pi \log \left (1-c^2 x^2\right )-2 c d e \tanh ^{-1}\left (\frac {c d}{e}\right ) \log \left (i \sinh \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )\right )+c d e \text {PolyLog}\left (2,e^{-2 \tanh ^{-1}(c x)}\right )-c d e \text {PolyLog}\left (2,e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )}{c d^3}+\frac {b^2 \left (-i c d e \pi ^3+24 c^2 d^2 \tanh ^{-1}(c x)^2-\frac {24 c d^2 \tanh ^{-1}(c x)^2}{x}+8 c d e \tanh ^{-1}(c x)^3+8 e^2 \tanh ^{-1}(c x)^3+48 c^2 d^2 \tanh ^{-1}(c x) \log \left (1-e^{-2 \tanh ^{-1}(c x)}\right )-24 c d e \tanh ^{-1}(c x)^2 \log \left (1-e^{2 \tanh ^{-1}(c x)}\right )-24 c^2 d^2 \text {PolyLog}\left (2,e^{-2 \tanh ^{-1}(c x)}\right )-24 c d e \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{2 \tanh ^{-1}(c x)}\right )+12 c d e \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(c x)}\right )\right )}{24 c d^3}+\frac {b^2 (c d-e) e (c d+e) \left (-6 c d \tanh ^{-1}(c x)^3+2 e \tanh ^{-1}(c x)^3-4 \sqrt {1-\frac {c^2 d^2}{e^2}} e e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )} \tanh ^{-1}(c x)^3-6 i c d \pi \tanh ^{-1}(c x) \log \left (\frac {1}{2} \left (e^{-\tanh ^{-1}(c x)}+e^{\tanh ^{-1}(c x)}\right )\right )-6 c d \tanh ^{-1}(c x)^2 \log \left (1+\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1+e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1-e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+12 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x) \log \left (\frac {1}{2} i e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )-\tanh ^{-1}(c x)} \left (-1+e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (\frac {1}{2} e^{-\tanh ^{-1}(c x)} \left (e \left (-1+e^{2 \tanh ^{-1}(c x)}\right )+c d \left (1+e^{2 \tanh ^{-1}(c x)}\right )\right )\right )-6 c d \tanh ^{-1}(c x)^2 \log \left (\frac {c (d+e x)}{\sqrt {1-c^2 x^2}}\right )-3 i c d \pi \tanh ^{-1}(c x) \log \left (1-c^2 x^2\right )-12 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x) \log \left (i \sinh \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )\right )-6 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,-\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )+12 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+12 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+3 c d \text {PolyLog}\left (3,-\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )-12 c d \text {PolyLog}\left (3,-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )-12 c d \text {PolyLog}\left (3,e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )-3 c d \text {PolyLog}\left (3,e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )}{d^3 \left (6 c^3 d^2-6 c e^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x])^2/(x^2*(d + e*x)),x]

[Out]

-(a^2/(d*x)) - (a^2*e*Log[x])/d^2 + (a^2*e*Log[d + e*x])/d^2 + (a*b*(I*c*d*e*Pi*ArcTanh[c*x] - (2*c*d^2*ArcTan
h[c*x])/x + 2*c*d*e*ArcTanh[(c*d)/e]*ArcTanh[c*x] - c*d*e*ArcTanh[c*x]^2 + e^2*ArcTanh[c*x]^2 - (Sqrt[1 - (c^2
*d^2)/e^2]*e^2*ArcTanh[c*x]^2)/E^ArcTanh[(c*d)/e] - 2*c*d*e*ArcTanh[c*x]*Log[1 - E^(-2*ArcTanh[c*x])] - I*c*d*
e*Pi*Log[1 + E^(2*ArcTanh[c*x])] + 2*c*d*e*ArcTanh[(c*d)/e]*Log[1 - E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))]
+ 2*c*d*e*ArcTanh[c*x]*Log[1 - E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))] + 2*c^2*d^2*Log[(c*x)/Sqrt[1 - c^2*x^
2]] - (I/2)*c*d*e*Pi*Log[1 - c^2*x^2] - 2*c*d*e*ArcTanh[(c*d)/e]*Log[I*Sinh[ArcTanh[(c*d)/e] + ArcTanh[c*x]]]
+ c*d*e*PolyLog[2, E^(-2*ArcTanh[c*x])] - c*d*e*PolyLog[2, E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))]))/(c*d^3)
 + (b^2*((-I)*c*d*e*Pi^3 + 24*c^2*d^2*ArcTanh[c*x]^2 - (24*c*d^2*ArcTanh[c*x]^2)/x + 8*c*d*e*ArcTanh[c*x]^3 +
8*e^2*ArcTanh[c*x]^3 + 48*c^2*d^2*ArcTanh[c*x]*Log[1 - E^(-2*ArcTanh[c*x])] - 24*c*d*e*ArcTanh[c*x]^2*Log[1 -
E^(2*ArcTanh[c*x])] - 24*c^2*d^2*PolyLog[2, E^(-2*ArcTanh[c*x])] - 24*c*d*e*ArcTanh[c*x]*PolyLog[2, E^(2*ArcTa
nh[c*x])] + 12*c*d*e*PolyLog[3, E^(2*ArcTanh[c*x])]))/(24*c*d^3) + (b^2*(c*d - e)*e*(c*d + e)*(-6*c*d*ArcTanh[
c*x]^3 + 2*e*ArcTanh[c*x]^3 - (4*Sqrt[1 - (c^2*d^2)/e^2]*e*ArcTanh[c*x]^3)/E^ArcTanh[(c*d)/e] - (6*I)*c*d*Pi*A
rcTanh[c*x]*Log[(E^(-ArcTanh[c*x]) + E^ArcTanh[c*x])/2] - 6*c*d*ArcTanh[c*x]^2*Log[1 + ((c*d + e)*E^(2*ArcTanh
[c*x]))/(c*d - e)] + 6*c*d*ArcTanh[c*x]^2*Log[1 - E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 6*c*d*ArcTanh[c*x]^2*
Log[1 + E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 6*c*d*ArcTanh[c*x]^2*Log[1 - E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c
*x]))] + 12*c*d*ArcTanh[(c*d)/e]*ArcTanh[c*x]*Log[(I/2)*E^(-ArcTanh[(c*d)/e] - ArcTanh[c*x])*(-1 + E^(2*(ArcTa
nh[(c*d)/e] + ArcTanh[c*x])))] + 6*c*d*ArcTanh[c*x]^2*Log[(e*(-1 + E^(2*ArcTanh[c*x])) + c*d*(1 + E^(2*ArcTanh
[c*x])))/(2*E^ArcTanh[c*x])] - 6*c*d*ArcTanh[c*x]^2*Log[(c*(d + e*x))/Sqrt[1 - c^2*x^2]] - (3*I)*c*d*Pi*ArcTan
h[c*x]*Log[1 - c^2*x^2] - 12*c*d*ArcTanh[(c*d)/e]*ArcTanh[c*x]*Log[I*Sinh[ArcTanh[(c*d)/e] + ArcTanh[c*x]]] -
6*c*d*ArcTanh[c*x]*PolyLog[2, -(((c*d + e)*E^(2*ArcTanh[c*x]))/(c*d - e))] + 12*c*d*ArcTanh[c*x]*PolyLog[2, -E
^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 12*c*d*ArcTanh[c*x]*PolyLog[2, E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 6*
c*d*ArcTanh[c*x]*PolyLog[2, E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))] + 3*c*d*PolyLog[3, -(((c*d + e)*E^(2*ArcT
anh[c*x]))/(c*d - e))] - 12*c*d*PolyLog[3, -E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] - 12*c*d*PolyLog[3, E^(ArcTan
h[(c*d)/e] + ArcTanh[c*x])] - 3*c*d*PolyLog[3, E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))]))/(d^3*(6*c^3*d^2 - 6*
c*e^2))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 37.68, size = 26972, normalized size = 65.47

method result size
derivativedivides \(\text {Expression too large to display}\) \(26972\)
default \(\text {Expression too large to display}\) \(26972\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))^2/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x^2/(e*x+d),x, algorithm="maxima")

[Out]

a^2*(e*log(x*e + d)/d^2 - e*log(x)/d^2 - 1/(d*x)) - 1/4*b^2*log(-c*x + 1)^2/(d*x) - integrate(-1/4*((b^2*c*d*x
 - b^2*d)*log(c*x + 1)^2 + 4*(a*b*c*d*x - a*b*d)*log(c*x + 1) + 2*(b^2*c*x^2*e + 2*a*b*d - (2*a*b*c*d - b^2*c*
d)*x - (b^2*c*d*x - b^2*d)*log(c*x + 1))*log(-c*x + 1))/(c*d*x^4*e - d^2*x^2 + (c*d^2 - d*e)*x^3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x^2/(e*x+d),x, algorithm="fricas")

[Out]

integral((b^2*arctanh(c*x)^2 + 2*a*b*arctanh(c*x) + a^2)/(x^3*e + d*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {atanh}{\left (c x \right )}\right )^{2}}{x^{2} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))**2/x**2/(e*x+d),x)

[Out]

Integral((a + b*atanh(c*x))**2/(x**2*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x^2/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*arctanh(c*x) + a)^2/((e*x + d)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )}^2}{x^2\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x))^2/(x^2*(d + e*x)),x)

[Out]

int((a + b*atanh(c*x))^2/(x^2*(d + e*x)), x)

________________________________________________________________________________________